If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-46x+126=0
a = 3; b = -46; c = +126;
Δ = b2-4ac
Δ = -462-4·3·126
Δ = 604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{604}=\sqrt{4*151}=\sqrt{4}*\sqrt{151}=2\sqrt{151}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-46)-2\sqrt{151}}{2*3}=\frac{46-2\sqrt{151}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-46)+2\sqrt{151}}{2*3}=\frac{46+2\sqrt{151}}{6} $
| -17+2y=-27 | | 2n^-11=11 | | 3x-17=91 | | 8/10=d/25 | | 6=-16t^2+0t+54 | | 11y=10y+150 | | 180=3x+(5x-6)=90 | | 5.29x-6.43=2.76x+9.88 | | 16p-9=8p-1 | | 61(x+4)=67 | | 4x+50=-1 | | 5.33x-6.42=2.76x+9.88 | | 96(x+11)=154 | | 4m-3/3-3m+2/4=3/12 | | 6(x-14)=54 | | 5(1/5+c)=3.5 | | -18+y=76 | | 20-p=9+3p/2 | | 4(x+61)=94.2 | | -2x-2-6(x+1)=-5x-6 | | x=19+47/54 | | 8x+2.5=4x=6-5 | | 10x+3-2X=4 | | 54(x-19)=47 | | 180=2x-11+73 | | 180=2x-11-73 | | 99(x+45.02)=103.24x | | 12a+6=10a+10 | | 89(x+45.1)=103.1x | | 5+1/3(6x+9)=-(x-4)) | | 1/2x-15=11 | | 4z+1=2z-z+10 |